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Abstract 

 

Increasing driver safety has been a focal point of car design since the invention of the seatbelt in 1959; 

however, despite safety improvements, there remains a vast imbalance in car-crash fatalities by age 

demographic; with young, inexperienced and elderly drivers considered higher risk than other 

categories of drivers. Driver inattention and distractions are the root cause of 56% of such fatalities each 

year, especially due to poor observation of road signs. 

This report aims to address poor driver awareness by developing a novel machine learning algorithm 

capable of detecting and narrating traffic signs in real-time that can be incorporated into a vehicle 

dashboard system. A thorough literature review was initially conducted to find the most suitable object 

detection method for this algorithm to be developed into a working prototype, with Convolutional 

Neural Networks chosen as the optimal model.  

From gaps from the literature review, this project improves current conventional training and testing 

processes used to develop detection algorithms. It also proposes a methodology for training a 

Convolutional Neural Network on a diverse globally distributed dataset of highway code traffic signs, 

using an approach specifically created for this project for dataset processing and image cropping. The 

resulting model achieved an 84.4% Mean Average Precision and a 0.81 F1 score after training, 

achieving state-of-the-art performance akin to the literature reviewed, despite training on a more diverse 

and complex dataset.  

The model was tested against a large dataset and specific scenarios aimed at determining its robustness 

to external factors such as visibility, obstruction and weather tests. The model proved its robustness to 

external influencing factors, obtaining a testing F1 score of 0.711. The narration part of the algorithm 

development was created, deployed and tested using real-time video. 

Given the state-of-the-art performance of the model, the machine learning algorithm created from this 

project, through commercialisation of a low-cost product, has the potential to not only increase driver 

awareness on our roads but save lives. 
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1.0 Introduction 
 

1.1 Problem Definition 
 

Skills to drive motorised vehicles are acquired through experience and situational learning. Vigilance 

on the road, surroundings, together with navigating and monitoring a vehicle’s cabin instruments can 

be challenging for all drivers especially, young 1, inexperienced and elderly 2 drivers.  

Young drivers in the United Kingdom are the largest group killed or seriously injured in car accidents 

[1], representing 32% of fatalities as shown Figure 1. Studies indicate injury or death in car accidents 

increases by over 22% for elderly drivers, where impaired vision and slower reaction times, due to 

cognitive and physical decline, contribute to this statistic [2]. Research suggests driver inattention and 

distraction are the primary causes of road accidents [3,4], with the most overlooked risk being highway 

code signs, exacerbated by 44% of drivers forgetting important traffic sign meanings [5]. This research 

suggests a key underlying problem common to both demographics is lack of perception. This is 

concerning, given the increased amount of roadside advertising and other environmental clutter with 

studies supporting young drivers invest more attention to road advertising than highway code signs [6] 

With technological breakthroughs like Tesla’s Autopilot, the technology to increase driver awareness 

is proven and available in the automotive industry. Nevertheless, given the high cost of such vehicles 

and evidence demonstrating young drivers are substantially likely to buy used vehicles [7], this 

technology is far from reaching the demographics that need it most.  

 

Figure 1: UK Driving Statistics for 2022 showing the number of car drivers killed or seriously injured 

per million population by age [1]. 

 

 
1 Drivers less than 30 years old 
2 Drivers more than 69 years old 
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1.2 Aims & Objectives 

 

The aim of this project is to deliver a low-cost solution to improve awareness and perception by 

providing early notifications of oncoming traffic signs using audio alerts to aid drivers of road and 

safety conditions ahead. It is specifically targeted to drivers with poor perception found in the 

demographics described earlier.  

In delivering this, the project’s primary objective is to construct a machine learning algorithm that 

recognises, interprets and narrates in natural language the meaning of essential traffic signs in real time 

using Computer Vision (CV), a field of artificial intelligence that extracts information from images. 

The project fulfils a secondary objective borne from the literature review and described further in 

section 2.2.  
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2.0 Literature Review 
 

2.1 Current Work 

Since the invention of the seatbelt in 1959 [8], driver safety is a key focus in vehicle design. With 

advancements in computing, efforts have focused on improving driver perception using CV, a 

technology already used for lane departure warnings and driverless cars. The following CV methods 

were reviewed for consideration for this project: 

 

2.1.1 Colour Recognition 

Colour Recognition is the process of separating a target object from an image’s background using its 

distinct colour. These algorithms are used in the manufacturing industry [9], where products are 

intentionally coloured distinctly for tracking [10]. This detection method requires low resources and 

can be optimised for speed [11], maintain high accuracies with many instances [12], and easily tuned 

for sensitivity [13]. Figure 2 illustrates an example of separating of small objects from an image.  

 

Figure 2: Images highlighting the extraction of relevant objects in an image: (A) Original image, (B) 

resulting image showing desired objects after colour filtering [12]. 

As all traffic signs are distinctly coloured, Colour Recognition can be applied to recognise traffic signs 

by setting appropriate thresholds to detect specific colours of such signs for further interpretation. Table 

1 illustrates accuracy levels of Colour Recognition algorithms from three commonly used methods.  
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Table 1: A Comparison of Different Algorithms Using Colour Detection to Detect and Classify Traffic 

Signs. 

Ref. Year Method Colours Detected Accuracy 

[14] 2010 Colour (RGB) Thresholding Red, Blue, Yellow 85.3% 

[15] 2007 Hue and colour Thresholding Red 86% 

[16] 2017 
Support Vector Machine Learning for pixel 

classification 
Red, Blue, Yellow 96% 

 

Whilst state-of-the-art Colour Recognition algorithms can boast high accuracies, these are negatively 

impacted in the surroundings where: 

a) There is poor lighting or visibility due to weather and dirt. Such limitations have been addressed 

in other research [17], [18], showing how recognition can be improved by changes in brightness, 

contrast, colour constancy and colour intensity. However positive detections remain low in 

adverse conditions impacting visibility (e.g. fog and snow) and excessive headlight glare.  

 

b) There are traffic signs and road advertisements of similar colours near each other. Colour 

Recognition algorithms cannot distinguish between such signs and may blend the two.  
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2.1.2 Shape Recognition 

Shape detection is a CV technique used to identify geometric shapes in photos or videos. The 

recognition algorithm pre-processes an image to calculate the number of edges, curves and corners of 

the target object contained within, allowing its shape to be predicted. This is achieved using techniques 

like the Hough Transform to extract lines, circles and ellipses from the image [19]. Shape detection is 

also used in the automotive industry, for example; to detect occupied spaces in car parks, shown Figure 

3 [19] where a Shape Recognition algorithm uses the Hough Transform method to find small rectangles 

which it classifies as cars, thus determining locations of empty parking spaces. 

 

Figure 3: Image of a parking lot. Vehicles are outlined as rectangles by via Shape Recognition methods 

[19]. 

Traffic signs use pre-defined shapes to provide meaning where outer circular shapes signify Orders, 

triangular shapes, “Warnings” and rectangular shapes, “Information”. Table 2 highlights the accuracy 

levels from relevant research in the field of traffic sign shape detection from four commonly used 

methods. 
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Table 2: A Comparison of Different Algorithms Using Shape Detection to Detect and Classify Traffic 

Signs. 

Ref. Year Method Shapes Detected Accuracy 

[20] 2010 Hough Transform 

Triangles, 

Diamonds, Squares, 

Circles 

83.67% 

[21]  2014 Optimal Corner Detection [22]  Triangles, Circles 87% 

[23]  2007 
Optimal Corner Detection, 

Colour Recognition 

Circles, Triangles, 

Rectangles 
95.5% 

[24]  2015 Hough Transform Circles, Triangles 97.3% 

 

With reference to the models in Table 2, the method for interpreting the meaning of traffic signs is 

derived from a two-step process, illustrated in Figure 4. First, the sign is determined by identifying the 

recognisable shapes within the image, giving the sign’s category. The inner symbol of the identified 

shape is then searched for within, which gives the classification of the sign. 

 

Figure 4: The application of shape detection for traffic signs as modelled by Sallah, et al [21]. 

Combining the first two images, (A), (B) gives the correct prediction shown in (C). 

The effectiveness of these algorithms for traffic use is subject to partial obstructions and the degree of 

degradation of both the shape of the sign and symbols within [25]. These methods scale poorly where 

the interpretation of a sign uses slightly different symbols in different countries. Algorithms relying on 

the number of edges or corners are easily confused when the number of predicted edges does not match 

the dataset, leading to misclassification, an effect worsened with distance, as edges appear as curves the 

further the sign is from the road [26].  



17 | P a g e  
 

2.1.3 Deep Learning 

Object detection using Deep Learning methods is one of the most popular methods for real-time 

detection [27]. These methods use Convolutional Neural Networks (CNN) to detect desired objects 

from an image. Before being able to detect target objects, CNNs must be trained and validated, allowing 

it to learn the features that differentiate the target object from other objects. Following this, CNNs makes 

detections by extracting important features such as the colours, lines and shapes, combining these to 

form geometric features and colour profiles of objects. The features for the target object are recognised 

by patterns learnt by the CNN, allowing detections to be made.  

The training and validation process of developing a CNN is illustrated in Figure 5. First, the untrained 

CNN is given annotated images from a training dataset from which it learns the features of target objects 

by updating its internal parameters (such as weights and biases). For each image in the training set, the 

CNN makes a prediction of the class (category of object) and location (drawn as a box) of the target 

object within the image. This prediction is compared against the actual class and location of the object 

and the difference between the two is quantified by a loss function, the lower this difference the closer 

the predicted image represents the actual. State-of-the-art performance is accepted when this difference 

is below 0.02 [28]. 

For each iteration (epoch) of training, the loss function is re-calculated and the aforementioned 

parameters are self-tuned to reduce the loss function to the desired level achieving state of the art 

performance. Between each epoch, the CNN is also tested on new images separate from the training 

data know as validation data. This step evaluates the CNN’s accuracy on unseen images, giving a rough 

indication of how well it performs on new images which allows performance metrices to be calculated, 

such as the Mean Average Precision and F1 scores. The validation stage gives an indication of how 

quickly CNN learns the features of the target objects. Based on this indication, adjustments to the 

training process can be made, by tuning the hyperparameters which helps improve the training process. 

Finally, once a final detection model has been made, it is tested on a large testing dataset which gives 

an unbiased indication of how well the CNN detects new objects and if necessary, the model can be 

retrained based on testing results.  
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Figure 5: A flowchart representing the process of training and validation to produce a successful CNN 

model capable of detection target objects 

Advancements in computational processing have led to increased use of CNNs in complex applications 

such as detecting early signs of brain tumours [29], identifying quality control faults in manufacturing 

[30]and detecting pedestrians and vehicles to enable autonomous navigation [31]. Firms like Nissan, 

Toyota and Tesla [32]use CNNs due to its robustness potential as the model’s accuracy is tied to the 

quality of the training dataset, which can be easily diversified and expanded. Although a number of  

companies have employed Deep Learning algorithms for speed detection cued from speed signs, as 

depicted in Figure 6 [33], they have yet to fully utilise the capabilities of interpreting other traffic signs 

for road safety altering. 

 

Figure 6: (A) A diagram illustrating how an on-board camera scans a traffic sign ahead (B) Picture of 

dashboard information shown the speed limit from the sign detected [33]. 
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Recent works in traffic sign detection is given in Table 3. The ‘You Only Look Once (YOLO)’ 

algorithm is a popular method optimised for its fast detections, as predicting object classes and bounding 

boxes is done in one step. This open-source algorithm is used by industry leaders in autonomous 

navigation, such as Tesla [34].  

Table 3: A Comparison of Different Algorithms Using Deep Learning Methods to Detect and Classify 

Traffic Signs. 

Ref. Year Algorithm 
Training 

dataset size 

Number 

of classes 
Accuracy Location 

[35] 2021 Faster-RCNN 10,842 54 76% Turkey 

[36]  2020 

TensorFlow 

Object Detection 

API 

2000 56 94.63% 
Germany, 

Belgium 

[37]  2022 YOLOv3 900 43 97.22% Germany 

[38] 2022 Custom CNN 11,074 23 98.45% Taiwan 

[39]  2021 YOLOv4 11,335 11 64.71% Global 

[40] 2016 Custom built 2000 10 97.69% Sweden 

[41] 2022 Yolov5 2,182 8 97.70% Custom 

 

Despite recent interest and investment, Deep Learning algorithms do have limitations which can inhibit 

performance. A machine learning model's accuracy strongly depends on its dataset quality. Having a 

dataset that depicts the diversity of items in the real world is critical for achieving reliable results in 

real-life scenarios. It is crucial that the dataset is balanced and unbiased to prevent the model overfitting, 

occurring when a model becomes too closely associated to the original dataset, leading to excellent 

training accuracy but poor testing accuracy. Bias arises from flaws within the dataset where the 

distribution of images are not representative to the population being observed. An example of the effects 

of high bias was IBM’s gender classifier model, where performance worsened for darker-skinned 

females due lower instances in training data [42] 

.  
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2.2 Literature Gap and Objectives 

 

2.2.1 Literature Gap 

The literature review identified three CV methods for traffic sign detection. Deep Learning using CNNs 

offered superior advantages over Colour and Shape Recognition, including greater robustness, error 

correction and its ability to detect multiple classes simultaneously. Consequently, these methods were 

chosen as the preferred CV method to prototype the traffic signs detection algorithm for this project. 

The literature review also highlighted three areas in which the results of research studies were subject 

to debate. Firstly, the high Mean Average Precision (mAP) and F1 scores from the research documented 

in several papers, such as [36,37], is debateable, as they use simplified datasets with limited variance in 

images and a low number of classes [40,41].  In addition, the models were not tested on separate testing 

data, giving no indication whether these high scores were a consequence of overfitting. 

Additional areas of opportunity included testing a model’s performance on realistic scenarios, such as 

weather or brightness, which had not been explored in current research. Testing these scenarios would 

ensure the detection model is suitable for deployment.  

Finally, considering geographic variety is crucial in ensuring the algorithm’s applicability in other 

regions. From the literature considered, few papers discussed the potential scope of traffic sign detection 

models, those that do, its training is often localised to specific regions. However, with global signs, this 

is a significant limitation which this project attempts to address. 
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2.2.2 Success Criteria and Novelty 

 

In addition to the aims and objectives outlined in Section 1.1, the project expanded its objective scope 

to address the aforementioned gaps in research for the field of traffic sign detection with the following 

success criteria: 

 

A. For training and testing, the project must use a dataset containing a variance of images in 

different conditions, captured in different weather and brightness settings. 

B. An assessment of the model’s performance on different conditions including weather, light and 

obstructions must be carried out to assess suitability for deployment.  

C. The project must test on a large dataset to ensure the algorithm is robust to variance. Since there 

is no universal definition of a large dataset, 5000 images were used as a benchmark taking 

reference that the dataset size of the research reviewed ranges from 900- 41,909 images.  

D. The training dataset for this project must be globally distributed to ensure the model can be 

used in different countries to increase the utility of the algorithm. 

E. The dataset for this project must include a minimum of 59 traffic classes categorised as 

regulatory or warning signs. This makes up 60% of these signs as defined in the UK highway 

code [43]. Forty percent of these signs were disregarded as it is unfeasible to have sufficient 

data for all these signs.   

F. The final trained CNN must achieve state-of-the-art performance after training, achieved when 

all loss functions are below 0.02 [44] and a mAP score above 81.1%, given as the benchmark 

for global datasets [45]. 
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3.0 Methodology 
 

Drawing inference from methodologies discussed from the Literature Review, this report follows a 

framework for developing the final narration algorithm as shown in Figure 7. 

 

Figure 7: Design flowchart for developing the final narration algorithm. 

 

3.1 Dataset Selection 

 

The dataset chosen must have a sufficient number of images, be globally distributed and include at least 

59 regulatory/warning traffic sign classes to fit criteria C and D in Section 2.2.2. This project was 

constrained in using open-source traffic sign datasets, a list of these is given in Table 4. 

Table 4: Publicly Available Traffic Sign Datasets with All Relevant Attributes 

Name Number of images Location Number of 

classes 

Kaggle Traffic Sign Detection Dataset 877 Global 4 

Chinese Traffic Sign Detection 6,164 China 58 

Mapillary Traffic Sign Dataset 100,000 Global 401 

DFG Traffic Sign Dataset 7,000 Slovenia 200 

Swedish Traffic Sign Dataset 4,000 Sweden 6 

German Traffic Sign Recognition Benchmark 50,000 Germany 43 

Russian Traffic Sign Images Dataset 100,000 Russia 156 
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The Mapillary Traffic Sign Dataset (MTSD) was most suited to the success criteria C and D given in 

Section 2.2.2 and was chosen as the dataset for development of the detection model. With enough 

classes and images, the MTSD is globally distributed as shown in Figure 8, showing good representation 

from different regions. 

 

Figure 8: Distribution of images for the Mapillary Traffic Sign Dataset [45]  

In addition, the MTSD comprises of 320,000 labelled traffic signs from all images [45], of these, 52,000 

are verified and fully annotated and 48,000 partially annotated, with only the traffic sign classes verified 

for each image. Although the dataset has 401 classes, the distribution of classes is unequal, with over 

65% of signs in the dataset labelled as “other”, a miscellaneous category that describes signs not within 

the global highway code. This class was removed from the dataset for this project and a new distribution 

was calculated with results shown in Figure 9, also illustrated as a bar-chart in Appendix 1, both 

showing class imbalances. 

A limitation of the MTSD is the inclusion of partially verified images, mostly submitted by the public, 

which are classified as partially annotated. This set of images was removed from the training dataset, 

to improve model accuracy as these signs are not fully verified. 

 

Figure 9: Scatter plot and box plot overlay for number of instances per class after removing traffic signs 

classified as “other”.
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3.2  Baseline Performance 

 

YOLOv5 was chosen as the preferred training algorithm due to its fast prediction times for real-time 

detection.  To use this framework the annotation formats describing the location of each sign were 
converted to be YOLOv5 compatible. The MTSD was then split into three subsets comprising of 36,590 

images (65%) for training, 5,321 (10%) for validation  and 13,346 images (25%) for testing, although 

testing was not required at this stage.   

 

As discussed in Section 2.1.3, the aim of training is to minimise the loss functions to achieve state-of-

art performance. For the detection of traffic signs detections, there are three loss functions that measure 

the following areas: 

• Box loss measures the difference between the predicted and actual bounding box coordinates 

of objects within the image, helping train the CNN to accurately locate the position of objects.  

• Object Loss measures how well the model correctly predicts the number of traffic signs in an 

image. 

• Class Loss measures how well the model can predict the class of each sign within the image.  

 

These functions were given weighted importance, by prioritising the Class and Object loss functions, 

important for narration tasks. Section 4.1 shows the results from baseline training. 

 

3.3 Class Reduction  
 

The results found in Section 4.1 suggest the class imbalance within the dataset is causing bias in the 

model’s predictions which is reducing accuracy. Modifying the dataset to smoothen the distribution 

can be used to reduce bias against underrepresented classes. The following techniques were 

considered in sequence to smoothen this distribution.  

 

3.3.1 Removing Unnecessary Classes to Problem 

 

This project’s aim was to notify drivers of essential information, thus, signs not deemed essential, e.g. 

“informational” and “complementary” categorised signs, were removed from the dataset. To achieve 

this, the MTSD class names were referenced, which have the convention ‘Sign Category-Meaning-

Location Variant’. Where a “keep-right” sign is given as 'regulatory--keep-right--g1'. Thus, the 

unnecessary categories were searched and removed from the dataset.  

After removal, a manual review was conducted to determine if other signs could be removed. The 

exclusion criteria assumed the algorithm's primary users would not be confident drivers, therefore signs 

relevant only to truck, bus, and taxi drivers were deleted from the dataset. After reduction, 237 classes 

were removed from the dataset, leaving 164 classes with a distribution shown in Figure 10. 
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Figure 10: Scatter plot and box plot overlay for number of instances per class after removing 

unnecessary classes. 

 

3.3.2 Grouping Regional Labels 

 

As outlined in criterion D in Section 2.2.2, the object detection model should not be constrained to have 

regional limitations. A potential factor influencing accuracy maybe the algorithm’s confusion with 

differentiating different variants, as they look similar. To reduce this error, classes with global variants 

were grouped, reducing the number of classes in the dataset from 164 to 93, with a distribution shown 

in Figure 11, showing the reduction of outliers in the dataset signifying a more balanced class 

distribution.  

 

Figure 11: Scatter plot and box plot overlay for number of instances per class after grouping regional 

labels. 

 

3.3.3 Removal of Low Instance Classes 
 

This approach addresses imbalanced class issues by eliminating underrepresented classes to balance the 

dataset and reduce computational load during training, however, removing these classes means the 

model will not consider them when deployed. Therefore, it is important to balance the benefits of class 

removal with the potential drawbacks of reducing the utility of the model. To achieve this balance whilst 
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meeting criterion E in Section 2.2.2, signs with fewer than 100 instances were removed, reducing the 

dataset to 63 classes. The final distribution of images in the dataset can be seen in Figure 12, which 

when compared to Figures 10 and 11 show the total reduction of classes from the original dataset. The 

impact of all Class Reduction techniques can be fully comprehended by comparing Appendix 2 (a bar 

chart of the final distribution of classes) to Appendix 1 (a bar chart of initial distributions of the MTSD). 

After this final reduction, an untrained CNN was trained using the new dataset, with results in Section 

4.2.  

 

 

Figure 12: Scatter plot and box plot overlay for number of instances per class after frequency 

thresholding at 100 instances. 
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3.4 Image Resizing and Cropping 

 

Further reduction of the dataset cannot be used to improve the accuracy as this will violate criterion E 

in Section 2.2.2. Therefore, other methods were explored to simplify the data, such as image processing. 

YOLOv5’s resizes all images to a 640 × 640-pixel square as the CNN requires square images for 

training. Images in the MTSD had an average width and height of 3497 and 2442 respectively, with 

standard deviations of width and height of 1055 and 749 respectively, shown in Figure 13. This meant 

images were scaled down by an average factor of 5.5, making labels too small for training. Increasing 

the image sized used by YOLOv5 was attempted however due to the higher memory usage required for 

processing, this was not an option for training due to the resource constraints to this project. Cropping 

methods were explored to reduce all image sizes, make the images’ aspect ratios closer to 1:1 (square) 

reduce the standard deviation of image sizes in the dataset. 

 

Figure 13: Boxplots of height and width before cropping. 

There are currently two main methods for cropping images for object detection applications. The first 

uses a generalised cropping technique to reduce the image dimensions by a fixed percentage, reducing 

the standard deviation of image dimensions and drawing the aspect ratio closer to 1:1. This method 

risks the unintentional cropping of key information from an image, diminishing its effectiveness and 

purpose. The second method mitigates this risk by drawing a cropping box using the locations of target 

objects within the image. However, this leads to irregular sized images which will increase the standard 

deviations of image sizes. 

To address this, a hybrid cropping algorithm was created that used bounding boxes to define the initial 

cropping box areas. To eliminate irregular shapes, 20% of the original image size was restored if the 

width or height of the image was less than 20% of the original image size. Finally, a 50-pixel tolerance 

was added to the edges of the images to ensure none of the edges of the objects were omitted from poor 

labelling. A comparison of these methods is shown in Figure 14, showing the hybrid technique captured 

both signs whilst retaining a regular shape. The hybrid cropping method was applied to the entire 

dataset, giving a distribution shown in Figure 15, showing the aspect ratio was closer to 1:1 than in 

Figure 13. The average width and height after cropping was 931 and 1123 pixels respectively and the 

standard deviation for these was 620 and 288 pixels respectively. A reason for the standard deviation 

of width being significantly higher than height is attributed to the fact that signs are typically located 

on the outer edges of the image. The algorithm was retrained using the same arguments and 

hyperparameters as in Section 3.3 with results and discussion in Section 4.3. 
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Figure 14: Four images demonstrating the differences in cropping techniques: Original Image (A), 

Generalised cropping with 40% cut-off, one of the traffic signs was cropped from the image (B), Label 

Cropping, giving an irregular image shape (C), Hybrid Cropping (D). 

 

 

Figure 15: Boxplots of height and width after cropping
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3.5  Background Elimination 

 

Inspection of images after cropping showed unimportant information was contained within these 

images, such as the sky, trees, and roads. To reduce noise, background elimination methods using RGB 

thresholds were explored. This process involved first; eroding, dilating and Gaussian blurring all images 

to enhance line boundaries. Secondly, colour thresholds for red, blue, yellow, black, and white traffic 

signs were defined and tuned by manually evaluating the algorithm’s performance on 200 randomly 

chosen images before training. Figure 16 shows the processes and their effect on an example image, 

illustrating how thresholding filters out noise. Although some parts of unwanted background remain in 

Figure 16 (C), the colour thresholds used had to compromise between reducing the clarity of traffic 

signs in the image and reducing noise in the image. Results from training using RBG thresholding are 

given in Section 4.4. 

 

Figure 16: (A) Original Image and (B) Image after the first stage of processing (C) Image after RBG 

thresholding. 
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3.6  Hyperparameter Optimisation 

 

Hyperparameters are configurations used to control the training process which can be optimised to 

maximise accuracy and prevent overfitting. YOLOv5’s twenty-seven tuneable hyperparameters were 

used as the basis of this project’s hyperparameter optimisation study, a description of these is given in 

Appendix 3, with Table 5 listing the most important hyperparameters for this project. 

Table 5: Hyperparameters Deemed More Relevant for Traffic Sign Detection. These Parameters Were 

Changed Appropriately By 20% from Default Values. 

Hyperparameter Name Function Description 

Learning rate 
Sets the step size after each epoch. A higher learning rate leads to a faster 

convergence but runs a risk if overshooting from the optimal solution. 

Momentum 
Sets the amount of epoch history to include for the learning equation to 

improve gradient decent. 

Box loss gain 
Places emphasis on the accuracy of the bounding box. 

Class Loss gain 
Places emphasis on the accuracy of the predicted class 

Object Loss gain 
Places emphasis on the accuracy of the number of objects in an image 

Anchor-multiple 

threshold 

Adjusts how sensitive the model is to variations in the aspect ratio of the 

predicted bounding boxes. This is important as most traffic signs have a 

bounding box of 1:1. 

Scaling 
Resizes all images to a standard size. A larger size requires higher resolution 

images and more RAM but leads to better results. 

 

Whilst training time was substantially reduced since baseline training, finding the optimal 

hyperparameters through manual iterative tuning would be too time consuming, estimated to take 270 

GPU hours. Therefore, YOLOv5’s hyperparameter optimisation algorithm was used which uses a 

genetic algorithm for optimisation by evaluating the impact each hyperparameter has on accuracy. The 

process, shown as a flowchart in Figure 17, takes the following steps to seek the optimal combination 

of hyperparameters: 

1. A pretrained detection model is chosen to start the hyperparameter evolution process. The 

model developed after image cropping described in Section 4.1 was used to initialise the 

evolution process. 

2. The initial hyperparameters are chosen as the first parent set 

3. The parent set hyperparameters are randomly changed to form 10 variations of new 

hyperparameters. 

4. The model is then trained for 10 epochs (a generation), each with a different set from the 

population. 

5. The Hyperparameters responsible for the 5 best epochs of the generation are taken, averaged, 

and chosen for the next generation’s parent set. 

6. This process is repeated with the new parent set until convergence of the mAP score was 

reached. 



 

31 | P a g e  
 

 

 

 

The results from hyperparameter optimisation can be found in Section 4.5. 

 

Figure 17: A flowchart of the hyperparameter evolution process 

 

  



 

32 | P a g e  
 

4.0 Results and Discussion 
 

4.1 Baseline Results 

 

Before results could be analysed, the F1 score had to be calculated, to compare the training and testing 

accuracies. This was calculated by finding the harmonic mean of the precision and recall, metrics 

determined during validation which represent the accuracy of detected objects and the percentage of 

actual objects correctly identified respectively.  

Baseline training was run for 1400 epochs, lasting 168 hours, before it was concluded the accuracy of 

the model would not increase, although convergence had not been reached. Figure 18 shows the mAP 

and F1 scores had maximum values of 23.2% and 0.32 respectively.  

The loss function training curves, shown in Appendix 4, were minimised after the first runtime session 

with values for box, object and class loss obtaining minimum values of 0.0617, 0.0161 and 0.02094 

respectively. However, due to experiencing timeouts every 500 epochs, these values progressively 

worsened, signifying the dataset must be simplified to prevent this from occurring again.  

Appendix 4 also shows the final precision higher than recall, indicating the model was more likely to 

miss a traffic sign than misclassify it, a tendency indicative of a bias in the dataset, which occurs when 

some classes are under-represented and will negatively impact accuracy. 

With reference to criterion F in Section 2.2.2, the goal of state-of-the-art performance is met when the 

mAP is greater than 81.1% and all loss functions are below 0.02, which in comparison to baseline 

results, show the model is far from this objective. 
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Figure 18: Graphs of mAP (A) and F1 score (B) against epoch number for baseline training. The red 

line shows the epoch with the optimal value. The sharp downwards peaks result from resuming training 

after a runtime timeout in Google Colaboratory. 
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4.2 Class Reduction 

The results after reducing the dataset’s classes are shown in Figure 19, with the mAP and F1 scores 

reaching maximum values of 34.07% and 0.412 respectively. As predicted, class reduction significantly 

reduced the training time, with model convergence after 147 epochs, after 70 hours (~3 days), a 58.33% 

decrease from baseline training. Appendix 5 shows the loss functions, with minimum values for box, 

object and class losses of 0.0447, 0.0159 and 0.00805 respectively, showing in reference to criterion F 

in section 2.2.2, the model had not achieved state-of-the-art performance in either the mAP or loss 

functions. Hence, further pre-processing was required before the model could be re-trained and 

deployed.  

 

Figure 19: Graphs of mAP (A) and F1 score (B) against epoch number after Class Reduction. The red 

line shows the epoch with the optimal value. 
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4.3  Image Cropping 

 

The Hybrid Cropping method created specifically for this project had a significant positive impact on 

the training accuracy of the model. The model reached convergence in 164 epochs, after 22.5 hours, 

32% quicker than Class Reduction, reaching training mAP and F1 scores of 76.1% and 0.75 

respectively, shown in Figure 20. This surpasses some models of other research reviewed in Section 2, 

including ones trained on global datasets [39]. Appendix 6 shows the loss functions took minimum 

values for box, object and class losses of 0.01756, 0.00567 and 0.00531 respectively, meaning these 

were all within the state-of-the-art threshold defined in criterion F in Section 2.2.2. However, the model 

had not surpassed the state-of-the-art threshold for mAP, meaning further optimisation was required.  

 

Figure 20: Graphs of mAP (A) and F1 score (B) against epoch number for training after Image 

Cropping. The red line shows the epoch with the optimal value. 
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4.4 Background Elimination 
 

Training using background elimination gave a maximum mAP and F1 score of 66.0% and 0.67 

respectively, as shown in Figure 21, showing background elimination using RGB thresholding was not 

as effective as expected, instead negatively impacting the model’s accuracy.  

Counterintuatively, the loss functions shown in Appendix 7, with values for box, object and class loss 

of 0.0143, 0.00449 and 0.00319 respectively, all improved with background elimination. This shows 

that the model overfitted its data, as the accuracy, measured by the mAP, decreased despite this 

improvement. 

The degredation in accuracy could be attributed to the variable lighting conditions of road images that 

cannot easily be captured through RGB thresholding, meaning some traffic signs may have been 

partially removed by the background elimination process. Therefore, going forward, RGB thresholding 

will not be used. However, the first stage of the process, which sharpened line boundaries of the image, 

was still used for preprocessing. 

For future work, exploring methods previously discussed such as colour segmentation (Section 2.1.1) 

or edge detection (Section 2.1.2) could be used over RGB thresholding as these methods use more 

advanced techniques to reduce image noise.  
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Figure 21: Graphs of mAP (A) and F1 Score (B) against epoch number after Background Elimination. 

The red line shows the epoch with the optimal value.  
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4.5 Hyperparameter Optimisation 

 

The evolution algorithm was run for seventy-three generations (730 epochs), lasting 75 hours. Figure 

22 shows the F1 and mAP training curves produced. For initial generations, the adjustment of 

hyperparameters was significant, as the optimization algorithm explored a wide range of different 

hyperparameters. However, as the accuracy began to stabilize, the variations in hyperparameters 

between each generation became increasingly minimal, meaning optimisation had converged to an 

optimal set of hyperparameters. The overall evolution process improved the model’s mAP by 7.28%, 

to 83.43%, meeting the accuracy requirements for criterion F defined in Section 2.2.2. 

Appendix 8 illustrates the movements of each hyperparameter from its initial value, with the absolute 

changes shown in Figure 23, showing the “Anchor Threshold” parameter had the largest influence on 

accuracy improvement. 

Unlike training, the hyperparameter optimisation algorithm seeks to maximise the accuracy and not 

minimise the loss functions. As a result, the loss functions, shown in Appendix 9, had high values for 

box, object and class loss of 0.0759, 0.00252 and 0.00159 respectively, showing the state-of-the-art 

performance had not been met. Therefore, the model had to be trained from scratch, using the 

hyperparameters found from optimisation, to minimise this loss function.  
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Figure 22: Graphs of mAP and F1 Score against Generation Number for hyperparameter evolution.
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Figure 23: A bar chart illustrating the change of hyperparameters from the start of evolution to the end 
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4.6 Final Training 

 

A final detection model was trained from scratch using the optimal hyperparameters found through the 

evolution algorithm. Figure 24 shows the final mAP and F1 scores of the model were 84.4% and 0.81 

respectively, with box, object and class losses of 0.0121, 0.00387, 0.00251 respectively (shown in 

Appendix 10), showing the model can be considered state-of-the-art as defined in criterion F in Section 

2.2.2. Appendix 10 shows the gap between the precision and recall has decreased compared to results 

shown in Section 4.1, indicating the reduced bias in the dataset and training process. Finally, 

convergence was reached after 82 epochs, lasting 12.5 hours, meaning the overall training process was 

reduced by 155.5 hours. 

Figure 24: mAP (A) and F1 Score (B) training curves for final training. The epoch with the optimal 

value is shown by a red line. 
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5.0 Model Testing 
 

Model testing is the process of verifying training results by testing the detection model against 

independent images. This was carried out to meet criteria A and C in section 2.2.2. 

5.1 Robustness Testing 

 

To determine the model’s robustness to external influencing factors, 3 main tests were carried out under 

this category.  

5.1.1 Obstruction Test 

 

Obstruction testing was carried out to evaluate the detection model’s accuracy against traffic signs 

partially obstructed by foliage, dirt and other vehicles. With reference to Figure 25, the model could 

detect objects with 50% or less obstruction. This success rate surpasses shape recognition algorithms 

which are not robust to obstructions of this extent.  

 

Figure 25: Predictions as the traffic sign is incrementally obstructed. (A) The algorithm identifies the 

stop sign with 80% confidence. (B) The sign is obstructed by 33%, the algorithm identifies the sign 

with 72% confidence. (C) The sign is obstructed by 50%, the algorithm identifies the sign with 50% 

confidence. (D) The sign is obstructed by 75%, the algorithm fails. 
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5.1.2 Brightness Test 

Brightness testing was carried out to evaluate the detection model’s accuracy against traffic signs in 

low-light settings, an area which other CV methods such as colour detection struggle in. With reference 

to Figure 26, the model achieved successful detections when brightness was lowered by 90% of natural 

light. Unexpectedly, the accuracy of detections increased as brightness decreased. This led to the 

conclusion that reducing the brightness helped decrease noise and background interference in the image, 

making it easier for the model to identify the traffic signs. This hypothesis was verified when lowering 

the brightness for other images, with the same trend shown. Hence, the model has displayed resilience 

to brightness changes, making it suited for implementation on roads where headlights are employed.  

 

(A) (B) 

(C) (D) 

Figure 26: Comparison of sign identification performance at different brightness levels. (A) Sign 

identified as road-works with 80% confidence. (B) 50% brightness reduction; sign identified correctly 
with 86% confidence. (C) 90% brightness reduction; sign identified with 88% confidence. (D) 95% 

brightness reduction (brightness increased for visual purposes); sign misidentified as a traffic sign (20% 

confidence) and a roadworks sign (22% confidence).  
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5.1.3 Weather Test 

Images of snow, rain and fog were tested to determine the model’s performance in different weather 

conditions, with results shown in Figures 27 to 29. Results shown that the model made correct 

predictions in settings of fog, snow and rain. With reference to Figure 28, the model’s confidence 

decreased significantly, which is attributed to the increased noise, making the sign blend in more with 

its environment. Nevertheless, it to acknowledge that correct predictions were always given, which is 

important as incorrect predictions could pose a risk to the driver. However, considering how snow 

significantly impacted the model’s performance, future work could focus on adding images in snowy 

settings to the dataset to increase confidence.  

 

 

Figure 28: Correct prediction on a stop sign with a moderate amount of snow with 26% confidence. 

 

 

 

 

 

(A) (B) 

Figure 27: Performance of model in foggy conditions. Original image (A) and image with prediction 

(B) are shown. The model correctly identified the Stop sign with 55% confidence. 
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Figure 29: Performance of model in different levels of rain. The model performed well in light rain 

(A), correctly predicting the sign with a 90% confidence. The model correctly predicted the sign in 

heavy rain with a blurry image at lower confidence 23% (B).  

  

(A) (B) 
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5.2  Large Dataset Testing 

To satisfy criterion C in Section 2.2.2, the model required testing against a large dataset independent 

from its validation and training datasets. It was found that the testing set supplied in the MTSD’s fully 

annotated set did not have labels and therefore could not be used for testing as the model’s predictions 

had to be verified. Furthermore, there were no alternative open-source datasets that had global 

distribution. Consequently, this project had to use the partially annotated set from the MTSD, which 

contained a higher prevalence of deficiencies than the training data, as the labelled images could be 

used to evaluate the model’s prediction accuracy. The partially annotated dataset exhibited a high 

prevalence of deficiencies meaning the quality is not the same as the training dataset. In hindsight, 

testing with verified data is preferred as this would have ensured that the quality of the data is at least 

comparable to the training dataset. 

To test the model on the large dataset, 13,350 images from the partially annotated set were separated 

for testing purposes. To increase the validity of the test, the same class reduction, image cropping and 

image processing steps applied to the training data were applied to the testing set, reducing the final set 

to 7,783 images.  

The model was tested on each image and a corresponding predicted annotation was given to the image 

if any traffic signs were found, which was compared to actual annotations. A full confusion matrix from 

these results is shown in Appendix 11, with a binary confusion matrix shown in Figure 30. 

 

Figure 30: Binary Confusion Matrix for Large Dataset Testing. The non-percentage numbers within 

the matrix represent the number of instances of traffic signs. 

To give a direct comparison between the training and testing accuracies of training and testing, the 

testing F1 score had to be calculated using the following equation: 
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F1 Score=
(precision × recall)

precision + recall
=

True Positives

True Positives + 
1
2

(False Positives + False Negatives)
 

F1 Score=
4496

4496+
1
2

(1020+2634)
=0.711  

Comparing this F1 score from final training (0.81), there is a decrease in performance. As the difference 

is only 12.2%, this difference is acceptable and can be attributed to the final slightly overfitting the data.  

 

(1) 
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6.0 Deployment of Prototype 

The final stage of development was integrating the object detection model with a narration algorithm 

to create a working prototype. In addition to narrating signs, segmenting each frame and storing 

predictions, the prototype carried out the following steps to minimise distractions and false predictions: 

Step 1. Remove predictions below a confidence threshold of 80%, filtering out incorrect 

predictions and irrelevant signs to the driver.  

 

Step 2. If signs are found, the one with the highest confidence score is narrated first. For future 

work, signs could be weighted to prioritise against levels of cautions, hazards and warnings 

depicted in these signs. For example, a warning sign will have higher weighting than a 

regulatory sign and thus will be narrated first.  

 

Step 3. The algorithm does not narrate signs detected more than once in a 10 second interval to 

avoid narrating the same sign. In a practical setting, this will require calculations to optimise 

near real time responses based on the distance of the sign and speed of the vehicle.  

6.1 Assessment and Discussion for Deployment 

As the final algorithm was constrained to a laptop, final testing was limited to objects captured by 

laptop’s camera, thus dashcam testing was not possible. Due to specifications of the laptop, the average 

framerate was 2 Frames-Per-Second rate (FPS). 

The prototype can make faster detections with GPU support due to its advantages in parallel processing, 

however, the final algorithm couldn’t use GPU support using cloud computing applications as webcam 

usage is not supported. To estimate the framerate with GPU support, a working assumption that the 

time taken for the detection model to make predictions on each frame is the main time component 

between frames. With this assumption, the time taken for the detection model is calculated, averaged 

and converted into a hypothetical framerate. Using Google Colaboratory’s GPU support, a random 

image from the testing dataset was detected with the model, taking 64.4 milliseconds to detect. The 

hypothetical framerate can be calculated as: 

𝐹𝑃𝑆 =
1000

64.4
=  15.53 𝐹𝑃𝑆 

15.53 FPS is comparable to low-end security cameras. However, car dashboard cameras record 30 FPS 

minimum to reduce motion blur when capturing fast-moving scenes. Thus the prototype can be adapted 

for integration into a dashboard camera by processing every second frame front the video. 

A video supplementing this report (“MECH0020_VideoTest_20072669.mp4”) shows the testing of the 

algorithm on 5 different signs. Relative sizing shown in Figure 31 for this test. The test showed that all 

narrations were correct and there were not repeated predictions. 



 

49 | P a g e  
 

 

Figure 31: A Screenshot during video testing. The entire image was input into the detection model and 

the correct detection was given. The sign occupied 0.904% of the total image area, which, upon 

comparison of testing images, is a reasonable and realistic size. 
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7.0 Conclusion 
 

This project’s aimed to deliver a low-cost notification system, providing audio alerts of oncoming traffic 

signs, to improve road safety. This was achieved by delivering a machine learning algorithm that 

recognises, interprets and narrates the meaning of traffic signs, improving driver awareness and was 

demonstrated in a working prototype. This project successfully developed a state-of-the-art Deep 

Learning recognition model trained on a globally distributed dataset containing traffic sign images, 

capable of detecting 65% of warning or regulatory classed traffic signs. The remaining 35% were 

intentionally omitted from the training dataset because their low occurrences do not provide sufficient 

data to train a CNN. 

This report also lays out a methodology to obtain a model capable of reaching state-of-the-art 

performance using bespoke image processing techniques that can be applied to other fields, such as a 

hybrid cropping process. 

The Convolutional Neural Network model produced from this project gave a mean Average Precision 

of 84.1% and an F1 score of 0.81, impressive as training was conducted using a more diverse, complex 

and challenging dataset with more classes to detect than those used in other research.  

This report addresses drawbacks of prior research by performing and demonstrating the robustness of 

the model in extreme scenarios and testing the performance of the model on 8150 images, obtaining a 

high testing F1 score of 0.711, demonstrating sufficient performance for commercial use. 

The final narration algorithm was tested, to ensure the model’s performance had not deteriorated from 

deployment, with safety considerations implemented to ensure the algorithm does not unnecessarily 

distract the driver such as setting confidence thresholds for narration. 

Before any consideration of commercialising the final detection algorithm, comparing the testing 

outcomes of the project against results from road tests under different weather conditions, locations and 

speeds, is needed.  

This report has laid the foundations to develop a product that will not only increase drivers’ confidence 

on the road, but potentially save lives.
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Appendix 1. Initial Dataset Distribution 

 

Figure A1.A: Bar charts of number of instances per class for the MTSD, without “other” class, for the first 40 classes in the dataset. The class names and 

subplots are arranged in class numeric order.



 

52 | P a g e  

 

 

Figure A1.B: Bar charts of number of instances per class for the MTSD, without “other” class, for classes 41-80 in the dataset. The class names and subplots 

are arranged in class numeric order.
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Figure A1.C: Bar charts of number of instances per class for the MTSD, without “other” class, for classes 81-120 in the dataset. The class names and subplots 

are arranged in class numeric order.
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Figure A1.D: Bar charts of number of instances per class for the MTSD, without “other” class, for classes 121-160 in the dataset. The class names and subplots 

are arranged in class numeric order.
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Figure A1.E: Bar charts of number of instances per class for the MTSD, without “other” class, for classes 161-200 in the dataset. The class names and subplots 

are arranged in class numeric order. 
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Figure A1.F: Bar charts of number of instances per class for the MTSD, without “other” class, for classes 201-240 in the dataset. The class names and subplots 

are arranged in class numeric order. 
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Figure A1.G: Bar charts of number of instances per class for the MTSD, without “other” class, for classes 241-280 in the dataset. The class names and subplots 

are arranged in class numeric order.
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Figure A1.H: Bar charts of number of instances per class for the MTSD, without “other” class, for classes 281-320 in the dataset. The class names and subplots 

are arranged in class numeric order.
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Figure A1.I: Bar charts of number of instances per class for the MTSD, without “other” class, for classes 321-360 in the dataset. The class names and subplots 

are arranged in class numeric order.
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Figure A1.J: Bar charts of number of instances per class for the MTSD, without “other” class, for classes 361-400 in the dataset. The class names and subplots 

are arranged in class numeric order.
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Appendix 2. Final Dataset Distribution 

 

Figure A2.A: Bar chart for the final distribution of classes depicting the number of instances per class for the first 31 classes. The class names and subplots are 

arranged in class numeric order.
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Figure A2.B: Bar chart for the final distribution of classes depicting the number of instances per class for the remaining 32 classes. The class names and subplots 

are arranged in class numeric order.
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Appendix 3. Hyperparameter Definitions 
 

Table A3: A list of all yolov5 and custom hyperparameters. Rows highlighted in bold were determined to be more relevant to the model or important for 

training and therefore these hyperparameters were changed appropriately by 20% from the default values.  

 Hyperparameter name Function Description 

M
o
d

el
 L

ea
rn

in
g
 H

y
p

er
p

a
ra

m
et

er
s 

Learning rate Sets the step size after each epoch. A higher learning rate leads to a faster convergence however there is a risk of overshooting 

from the optimal solution. 

Batch Size Determines the number of samples for each epoch of training. 

Momentum Sets the amount of epoch history to include for the learning equation to improve gradient decent. 

Weight Decay Adds a penalty term to the cost function of the learning process which can prevent overfitting. 

Warmup Epochs Specifies initial epochs with low learning rate at the beginning of training, allowing the CNN to adapt to the data slowly.  

Box loss gain Sets a multiplier which places more emphasis on the accuracy of the bounding box. 

Class Loss gain Sets a multiplier value which places more emphasis on the accuracy of the predicted class 

Class BCE Loss Controls the loss function binary cross entropy loss (BCE) used for binary classification. 

Object Loss gain Sets a multiplier value which places more emphasis on the accuracy of the number of objects in an image 

Object BCE Loss Controls the loss function binary cross entropy loss (BCE) used for binary classification. 

IOU training threshold Controls the Intersection Over Union (IOU) threshold for acceptable classifications which dictates the model’s sensitivity to 

slight changes between the predicted and ground truth bounding boxes. 

Anchor-multiple threshold Adjusts how sensitive the model is to variations in the aspect ratio of the predicted bounding boxes.  

Anchors per output layer Specifies how many anchor boxes are used to generate a bounding box for each cell in the grid. For larger image sizes a greater 

value should be used. 

Focal Loss gamma This gives a weight to each sample based on its difficulty to classify (with rare objects usually being ranked highly) to improve 

the model’s ability to detect rare objects.  
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 Hyperparameter name Function Description 
D

a
ta

se
t 

A
u

g
m
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m
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Scaling Resizes all images to a standard size. A larger size requires higher resolution images and more RAM but leads to better results. 

Mosaic Creates a large new image containing a combination of multiple images, useful when detecting multiple objects in one image. 

Degree Rotates all images by a given degree range randomly. 

flipud: Flips images up and down randomly. 

fliplr:  Flips images left and right randomly. 

Hsv_h Applies image HSV-Hue augmentations. 

Hsv_s Applies image HSV-Saturation augmentations. 

Hsv_v Applies image HSV-Value augmentations. 

Translate Translates all images by a percentage. 

Shear Distorts the image by shifting pixels in a fixed direction based on given range. 

Perspective Simulates changes in camera angle or viewpoint.  

Mix-up Creates new images by taking a weighted average of two image’s pixel values. 

Copy_paste Copies small sections of an image to create a new image 

C
u

st
o

m
 

H
y
p

er
p

a
ra

m
et

er
s 

Resizing value Controls the amount of extra image space an image is assigned when too small.  

Frequency threshold 

 

Sets the minimum number of images per class 

Quantile resizing number Specifies the quantile that is taken to choose a resize value for the image 
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Appendix 4. Baseline Results of Precision, Recall, Loss 

functions 
 

 
Figure A4.1: Graphs of Precision (A) and Recall (B) against the number of epochs for baseline training 

 



 

66 | P a g e  
 

 

Figure A4.2: Graphs of different loss functions vs epoch numbers. (A) Box loss, (B) Object Loss, (C) 

Class Loss for baseline training.  
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Appendix 5. Class Reduction Training Results of 

Precision, Recall, Loss Functions 
 

 

Figure A5.1: Graphs of Precision (A) and Recall (B) against the number of epochs for training after 

class reduction 
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Figure A5.2: Graphs of different loss functions vs epoch numbers. (A) Box Loss (B) Object Loss (C) 

Class Loss for training after class reduction  
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Appendix 6. Training Results of Precision, Recall, Loss 

Functions After Image Cropping 
 

 

Figure A6.1: Graphs of Precision (A) and Recall (B) against the number of epochs for training using 

image cropping. 
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Figure A6.2: Graphs of different loss functions vs epoch numbers. (A) Box Loss (B) Object Loss (C) 

Class Loss for training with image cropping.  
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Appendix 7. Background Elimination Training Results of 

Precision, Recall, Loss functions 
 

 

Figure A7.1: Graphs of Precision (A) and Recall (B) against the number of epochs for training using 

background elimination. 
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Figure A7.2: Graphs of different loss functions vs epoch numbers. (A) Box Loss (B) Object Loss (C) 

Class Loss for training with background elimination. 
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Appendix 8. Graphs of Hyperparameter Movements 
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Figure A10: Plots of individual hyperparameter movements for each generation. Only plots for hyperparameters 

that changed value during the evolution process are shown. Each plot is given in terms of mAP50:90 (y-axis) 

against hyperparameter value (x-axis). Where mAP50:90 represents the mean average precision across an IoU 

threshold from 0.5 to 0.9.  The best value chosen for each parameter is shown at the top of each plot and marked 

with a black cross on the diagram. Each circle represents one generation, with the colours within representing the 

area’s density, with blue representing low density and yellow representing high density.   
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Appendix 9. Hyperparameter Training Results of 

Precision, Recall, Loss functions 
 

 

Figure A8.1: Precision (A) and recall (B) curves against generation number for hyperparameter 

evolution training. The high variance in precision is caused by an abundance of false negatives (missing 

traffic signs). This could be attributed to the poor class and object losses.  
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Figure A8.2: Box (A), Object (B) and Class (C) loss functions against generation number for 

hyperparameter evolution. Due to the iterative improvement of hyperparameters, convergence of the 

loss functions is not clear, motivating the need to train a model from scratch using these sets of 

hyperparameters.  
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Appendix 10. Final Training Results of Precision, Recall, 

Loss functions 

 

 

Figure A9.1: Graphs of Precision (A) and Recall (B) against the number of epochs for training using 

image cropping. 
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Figure A9.2: Graphs of different loss functions vs epoch numbers. (A) Box Loss (B) Object Loss (C) 

Class Loss for final training.  
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Appendix 11. Largescale Testing Confusion Sub-Matrices 
 

 

 

(A) 

(B) 
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(C) 

(D) 
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(E) 

(F) 
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Figure A11: Confusion Matrix created from largescale testing split into smaller sub-matrices shown in 

figures A-G for visualisation purposes. The background class is shown for all matrices, either indicates 

a false negative (missed sign) or fase positive. Some diagonals have no entries, predominantly shown 

in Figure A10C and A10D, indicating there no traffic signs of that class in the testing dataset The 

complete confusion matrix made these sub-matrices was condensed into a binary confusion matrix 

shown in Figure 28. 

  

(G) 
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